GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

No. of Printed Pages : 15

XII - JULY 2022

பதிவு எண் J **Register** Number

PART - III கணிதம் / MATHEMATICS

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Version)

கால அளவு : 3.00 மணி நேரம்] Time Allowed : 3.00 Hours]

[மொத்த மதிப்பெண்கள் : 90 [Maximum Marks : 90

212770

1_

Y

U

6312

2

2

- அறிவுரைகள் : (1) அனைத்து வினாக்களும் சரியாகப் பதிவாகி உள்ளதா என்பதனைச் சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின், அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும்.
 - அல்லது கருப்பு மையினை (2) நீலம் மட்டுமே எழுதுவதற்கும், அடிகோடிடுவதற்கும் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும்.
- **Instructions** : (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
 - Use Blue or Black ink to write and underline and pencil to draw (2)diagrams.

பகுதி – I / PART - I

குறிப்பு : (i) அனைத்து வினாக்களுக்கும் விடையளிக்கவும்.

20x1=20

- (ii) கொடுக்கப்பட்டுள்ள மாற்று விடைகளில் மிகவும் ஏற்புடைய விடையைத் தேர்ந்தெடுத்துக் குறியீட்டுடன் விடையினையும் சேர்த்து எழுதவும்.
- Note : (i) All questions are compulsory.
 - Choose the most appropriate answer from the given four alternatives (ii) and write the option code and the corresponding answer.

[திருப்புக / Turn over

5

1.
$$A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$$
 மற்றும் $A^{T} = A^{-1}$ எனில், *x*-ன் மதிப்பு :

$$(\textcircled{A}) \frac{-4}{5} \qquad (\textcircled{A}) \frac{-3}{5} \qquad (\textcircled{A}) \frac{3}{5} \qquad (FF) \frac{4}{5}$$
If $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$ and $A^{T} = A^{-1}$, then the value of x is :

$$(A) = \begin{bmatrix} \frac{-4}{5} & (b) & \frac{-3}{5} & (c) & \frac{3}{5} & (d) & \frac{4}{5} \end{bmatrix}$$

5

2. A என்பது பூச்சியமற்றக் கோவை அணி மற்றும் A
$$^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$$
 எனில் (A^T) $^{-1} =$

$$(\mathfrak{A}) \begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix} \qquad (\mathfrak{A}) \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix} \qquad (\mathfrak{A}) \begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix} \qquad (\mathfrak{F}) \begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ then $(A^T)^{-1} =$

(a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$

(இ) நீள்வட்டம் (ஈ) வட்டம்

If z=x+iy is a complex number such that |z+2|=|z-2|, then the locus of z is

(a) real axis (b) imaginary axis ellipse (c) (d) circle

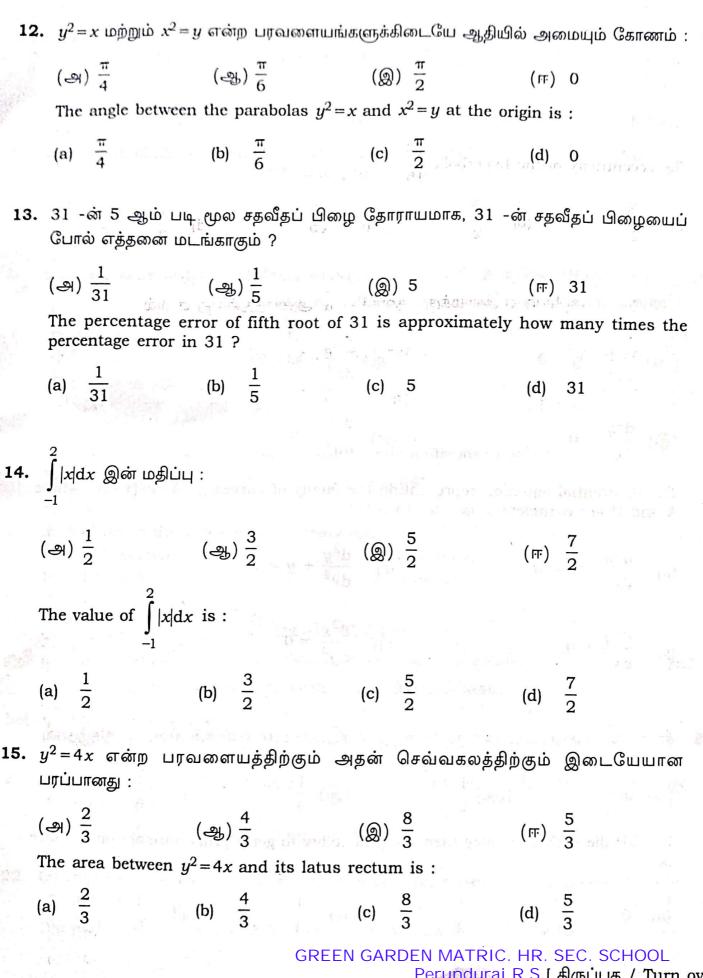
> GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

1

6312

4.
$$i^{n} + i^{n+1} + i^{n+2} + i^{n+3} - \dot{\alpha}^{n} \omega_{0} \beta_{0} \omega_{1}$$
:
(a) 0 (cb) 1 (b) 1 (c) -1 (f) i
 $i^{n} + i^{n+1} + i^{n+2} + i^{n+3} i^{n}$:
(a) 0 (b) 1 (c) -1 (d) i
5. $x^{3} + 64 - \dot{\alpha} \otimes_{\mathcal{O}} \bigcup_{1} \dot{x}^{4} \beta_{1} \dots \dot{x}^{4}$
A zero of $x^{3} + 64$ is :
(a) 0 (b) 4 (c) 4i (d) -4
6. $\cos^{-1} \left(\cos \frac{\pi}{6} \right) - \dot{\alpha} \bigcup_{1} \beta_{2} \dot{\alpha} \dots \beta_{2} \dot{\beta} \frac{5\pi}{6}$ (g) $\frac{-\pi}{6}$ (f) $\frac{\pi}{3}$
The principal value of $\cos^{-1} \left(\cos \frac{\pi}{6} \right)$ is :
(a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $\frac{-\pi}{6}$ (d) $\frac{\pi}{3}$
7. $\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$ Grient Birau: Lipiplish geoleticistic auglum scale (0, 3) Grient up interflow unoutum scale Geometry $1 - \frac{1}{2} + \frac{y^{2}}{9} = 1$ Grient Birau: Lipiplish geoleticistic auglum scale (0, 3) Grient up interflow unoutum scale Geometry $1 - \frac{1}{2} + \frac{y^{2}}{9} = 1$ Grient Birau: Lipiplish geoleticistic auglum scale (0, 3) Grient up interflow unoutum scale Geometry $1 - \frac{1}{2} + \frac{y^{2}}{9} = 1$ Grient Birau: Lipiplish geoleticistic auglum scale (0, 3) Grient up interflow unoutum scale Geometry $1 - \frac{1}{2} + \frac{y^{2}}{9} - \frac{1}{2} - \frac{1}{2} + \frac{y^{2}}{9} - \frac{1}{2} - \frac{1}{2} + \frac{y^{2}}{9} = 1$
The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$
having centre at (0, 3) is :
(a) $x^{2} + y^{2} - 6y - 7 = 0$ (b) $x^{2} + y^{2} - 6y + 7 = 0$
(c) $x^{2} + y^{2} - 6y - 5 = 0$ (f) $x^{2} + y^{2} - 6y + 7 = 0$
(c) $x^{2} + y^{2} - 6y - 5 = 0$ (d) $x^{2} + y^{2} - 6y + 5 = 0$

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S.[திருப்புக / Turn over PH: 9486379461, 8344933377


6312

8.	$\frac{x^2}{16} - \frac{(y-3)^2}{4} = 1$ Given in the second seco	ாற அதிபரவளை	பத்தின், மையத்	; தொலைத் தச	ଗ୍ୟେ :	
	$(\mathfrak{S}) \frac{\sqrt{3}}{2}$ (e)	$(\frac{\sqrt{5}}{2})$	(இ) √5	(गः)	$\frac{1}{2}$	
	The eccentricity of the	hyperbola $\frac{x^2}{16}$ -	$\frac{\left(y-3\right)^2}{4}=1$	is :		₩1. 1455 -
	(a) $\frac{\sqrt{3}}{2}$ (b)	$\frac{\sqrt{5}}{2}$	[™] (c) √5	் எஞ்சுகள் பக்கதுகள் பக்கதுகள்	$\frac{1}{2}$	
9.	→ β மற்றும் γ ஆகியனை	a the second and a second at a	the transformer of the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 [⁸]
	(씌) $\begin{bmatrix} \overrightarrow{}, \ \overrightarrow{}, \ \overrightarrow{} \end{bmatrix} = 1$	(ද	b) $\begin{bmatrix} \lambda & \lambda & \lambda \\ \alpha, & \beta, & \gamma \end{bmatrix} =$	ç 48 mi ≣ −1 sast	none, serve The serve	R.
	$(\textcircled{)} \begin{bmatrix} \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma} \end{bmatrix} = 0$	(क)	$\left[\begin{array}{c} \rightarrow & \rightarrow \\ \alpha & \beta & \gamma \end{array}\right] =$	= 2		
	If a vector $\stackrel{\rightarrow}{\alpha}$ lies in th	e plane of $\vec{\beta}$ and	d $\overrightarrow{\gamma}$ then :			
	(a) $\begin{bmatrix} \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma} \end{bmatrix} = 1$	(b)	$\begin{bmatrix} \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma} \end{bmatrix} =$	= -1	તેકીએ મહત્વન મળે શ પ	
	(c) $\begin{bmatrix} \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma} \end{bmatrix} = 0$	(d)	$\begin{bmatrix} \overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma} \end{bmatrix} =$	= 2		
10.	ஆதிப்புள்ளியிலிருந்து 3	3x-6y+2z+7=0) என்ற தளத்தி	ற்கு உள்ள தெ	ாலைவு :	
		<u></u> д) 1	(இ) 2	(गन)		
	Distance from the orig	in to the plane	an a	i i narodi di	Р	
	3x-6y+2z+7=0 is : (a) 0 (b)	1	(c) 2	(d)	tain air dennia 3 113- Sugar Eg	0.00%
11.	ஒரு கல்லானது செங்குத் உயரம் <i>x</i> =80t-16t ² .	7.5 (2)				1
	ஆனது : (அ) 2 (ச	<u>ж)</u> 2.5	(ඹූ) 3	(丣)	3.5	o Sidiin. Aa
	A stone is thrown up by $x=80t-16t^2$. The	vertically. The l	height it reach	nes at time t	seconds is g	
	given by : (a) 2 (b)	2.5	(c) 3	(d)	3.5	1
	A may to constant	- Martin			1	

4

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

I

Perundurai R.S.**[திருப்புக / Turn over** PH: 9486379461, 8344933377

6312

16. மையம் (h, k) மற்றும் ஆரம் 'a' கொண்ட எல்லா வட்டங்களின் வகைக்கெழுச் சமன்பாட்டின் வரிசை ______ இங்கு h, k என்பன எதேச்சை மாறிலிகள் (மாறத்தக்க மாறிலிகள்)

The order of the differential equation of all circles with centre at (h, k) and radius 'a' is ______. (where h, k are arbitrary constants)

- (a) 2 (b) (=) 2 (c) (=) 2 (c) (=) 2 (c) (=) 7 (c) (=) 2 (c) (=) (c) (=)
- 17. y=A cos(x+B), இங்கு A, B என்பன எதேச்சை மாறிலிகள் எனும் சமன்பாட்டைக் கொண்ட வளைவரை குடும்பத்தின் வகைக்கெழுச் சமன்பாடு :

$$(\textcircled{A}) \frac{d^2 y}{dx^2} - y = 0 \qquad (\textcircled{A}) \frac{d^2 y}{dx^2} + y =$$

$$(\textcircled{A}) \frac{d^2 y}{dx^2} = 0 \qquad (\textcircled{F}) \frac{d^2 x}{dy^2} = 0$$

The differential equation representing the family of curves $y=A \cos(x+B)$, where A and B are parameters, is :

(a) $\frac{d^2y}{dx^2} - y = 0$ (b) $\frac{d^2y}{dx^2} + y = 0$

(c)
$$\frac{d^2 y}{dx^2} = 0$$
 (d) $\frac{d^2 x}{dy^2} = 0$

18. சீரான ஒரு பகடையை ஒரு முறை உருட்டும்போது பகா எண்கள் கிடைக்க நிகழ்தகவு

(அ) 0 (굊)
$$\frac{1}{2}$$
 (இ) $\frac{1}{4}$ (FF) $\frac{1}{6}$

If a fair die is thrown once then the probability to get a prime number on the face is :

(a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

o Presson apr

7

and the second second

(c) 3 (d) 4

19. X என்ற சமவாய்ப்பு மாறியின் நிகழ்தகவு நிறைச்சார்பு பின்வருமாறு :

x	-2	3	1
P(X=x)	$\frac{\lambda}{6}$	$\frac{\lambda}{4}$	$\frac{\lambda}{12}$

எனில் λ -ன் மதிப்பு :

(종) 1 (종) 2 (இ) 3 (주) 4 A random variable X takes the probability mass function :

x	<u></u> 2 [`]	37. 37.sh (Ar	. ^{के} 1 ^{0 क} . जीव का क
P(X=x)	$\frac{\lambda}{6}$	$\frac{\lambda}{4}$	$\frac{\lambda}{12}$

The value of λ is : (a) 1

19.4

20. பின்வருபவைகளில் எது N -ன் மீது ஓர் ஈருறுப்புச் செயலி ஆகும் ?

(b) 2

(அ) கழித்தல்	(കൃ) பெருக்கல்						
(ඹ)	வகுத்தல்	(गः)	மேற்கூறிய அனைத்தும்						
Which one of the following is a binary operation on N?									
(a)	Subtraction	(b)	Multiplication						
(c)	Division	(d)	All of the above						

பகுதி – II / PART - II

குறிப்பு :	(i)	எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கவும். 7x2=14	
	(ii)	வினா எண் 30 –க்கு கண்டிப்பாக விடையளிக்கவும்.	

- Note: (i) Answer any seven questions. (ii) Question number 30 is Compulsory.
- **21.** $f(x) = x^2 + 3x$ என்ற சார்பிற்கு df காண்க. மேலும் x = 3 மற்றும் dx = 0.02 எனும்போது df -ஐ மதிப்பிடுக. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 3 and dx = 0.02.
- 22. α மற்றும் β ஆகியன x²+5x+6=0 என்ற இருபடி சமன்பாட்டின் மூலங்கள் எனில் α²+β²=13 என நிறுவுக.

If α and β are the roots of $x^2 + 5x + 6 = 0$, then show that $\alpha^2 + \beta^2 = 13$.

[திருப்புக / Turn over GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

6312

- 23. மதிப்பு காண்க. $\sin^{-1}(1) + \cos^{-1}(1)$ Find the value of $\sin^{-1}(1) + \cos^{-1}(1)$.
- **24.** $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$ மற்றும் $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$ என்ற இரு நேர்க்கோடுகளுக்கு இடைப்பட்ட குறுங்கோணம் காண்க. Find the acute angle between the two straight lines.

IN JOUR DULL F

x - 4 y z + 1 and x - 1 y + 1 z - 2 bloc slim is much

$$\frac{1}{2} = \frac{1}{1} = \frac{1}{-2}$$
 and $\frac{1}{4} = \frac{1}{-4} = \frac{1}{2}$

- 25. $y = x^2 x^4$ என்ற வளைவரையின் தொடுகோட்டை (1, 0) என்ற புள்ளியில் காண்க. Find the tangent to the curve $y = x^2 - x^4$ at (1, 0).
- **26.** $z_1 = 3$, $z_2 = -7i$ மற்றும் $z_3 = 5 + 4i$ எனில் $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ என்பதனை நிறுவுக. If $z_1 = 3$, $z_2 = -7i$ and $z_3 = 5 + 4i$, show that $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$.
- 27. $y = ae^{x} + be^{-x}$ என்பது y'' y = 0 எனும் வகைக்கெழுச் சமன்பாட்டின் தீர்வு எனக் காட்டுக. Show that $y = ae^{x} + be^{-x}$ is a solution of the differential equation y'' - y = 0.
- 28. ஒரு சமவாய்ப்பு மாறி X -க்கு நிகழ்தகவு நிறை சார்பானது எனில்,

x	1	2	13	1. 4 R	5	
$f(\mathbf{x})$	k ²	2k ²	3k ²	2k	3k	

k-ன் மதிப்பு $\frac{1}{6}$ என நிறுவுக.

A random variable X has the following probability mass function.

x	1	2	3	4	5
f (x)	k ²	$2k^2$	3k ²	2k	3k

Show that the value of k is $\frac{1}{4}$.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

29. ஒரு பால் விற்பனையகத்தில் வினியோகிக்கப்படும் பாலின் அளவு சமவாய்ப்பு மாறி X என்க. குறைந்தபட்சம் 200 லிட்டர்கள் மற்றும் அதிகபட்சம் 600 லிட்டர்களுடன் நிகழ்தகவு அடர்த்தி சார்பு

 $f(x) = \begin{cases} k, & 200 \leq x \leq 600 \\ 0 & பிற மதிப்பு களுக்கு \end{cases}$

எனில் k-ன் மதிப்பு காண்க. ஆக்க குகிக்கத்தை

Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function X is :

 $f(x) = \begin{cases} k, & 200 \le x \le 600 \\ 0 & \text{otherwise} (0, 1) \end{bmatrix} \text{ for a first of the second second$

Find the value of k.

30. y=ax²+bx+c என்ற வளைவரையின் வகைக்கெழுச் சமன்பாட்டைக் காண்க. இங்கு a, b மற்றும் c என்பன எதேச்சை மாறிலிகள்.

.(C., i) 2.8

Form the differential equation of the curve $y=ax^2+bx+c$ where a, b and c are arbitrary constants.

பகுதி – III / PART - III

குறிப்பு : (i) எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கவும். 7x3=21

- (ii) வினா எண் **40 –க்கு கண்டிப்பாக** விடையளிக்கவும்.
- Note: (i) Answer any seven questions.
 - (ii) Question number 40 is Compulsory.

31. $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$ எனக்கொண்டு $(AB)^{-1} = B^{-1}A^{-1}$ என்பதைச் சரிபார்க்கவும்.

Verify
$$(AB)^{-1} = B^{-1}A^{-1}$$
 with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$

[திருப்புக / Turn over GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

TOTAL AND A CAMPACE IN A CAMPACE AND A CARDA

S William mann i sch i di di di

6312

1.

. ...

32.
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix}$$
 என்ற அணியின் தரம் காண்க.

	[1	-2	3	
Find the rank of the matrix	2	4	-6	
	5	1	- 1	

ட வல்லத் நகடு வெப்பத்தினால் தீர்த விரிவடை கின்றத் வைடை புதல் ஒல் ட லிலிருந்து 19,75 தொடி -ஆட் அதிகரிக்கும் 76 ஸ்ர ஊக்ஸ் புஸ்லின் ஜர்பி

33. 6 – 8i -ன் வர்க்கமூலம் $\pm (2\sqrt{2} - i\sqrt{2})$ என நிறுவுக.

Show that the square roots of 6-8i are $\pm(2\sqrt{2}-i\sqrt{2})$.

34. x⁴ – 3x² – 4 = 0 என்ற சமன்பாட்டின் மூலங்கள் ±2, ±i என நிறுவுக.

Prove that the roots of the equation $x^4 - 3x^2 - 4 = 0$ are ± 2 , $\pm i$.

35. *x*²+*y*²+6*x*−4*y*+4=0 எனும் வட்டத்தின் மையம் மற்றும் ஆரம் காண்க.

Find centre and radius of the circle $x^2 + y^2 + 6x - 4y + 4 = 0$.

36. ஒரு துகள் (1, 2, 3) எனும் புள்ளியிலிருந்து (5, 4, 1) எனும் புள்ளிக்கு 8^î + 2^ĵ – 6^k மற்றும் 6^î + 2^ĵ – 2^k என்ற மாறாத விசைகளின் செயல்பாட்டினால் நகர்த்தப்பட்டால், அவ்விசைகள் செய்த மொத்த வேலையைக் காண்க.

A particle acted on by constant forces $8\hat{i} + 2\hat{j} - 6\hat{k}$ and $6\hat{i} + 2\hat{j} - 2\hat{k}$ is displaced from the point (1, 2, 3) to the point (5, 4, 1). Find the total work done by the forces.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

11

The California

· winnerservatio + 242 - 1 (3) and player

NUMBER TRANSPORT

to the rank of the means [21] A

37. $\lim_{x \to 0^+} x \log x$ -ன் மதிப்பு 0 என நிறுவுக.

Show that $\lim_{x \to 0^+} x \log x$ is 0.

38. ஒரு வட்ட வடிவத் தகடு வெப்பத்தினால் சீராக விரிவடைகின்றது என்க. அதன் ஆரம் 10.5 செ.மீ - இலிருந்து 10.75 செ.மீ -ஆக அதிகரிக்கும் போது அதன் பரப்பில் ஏற்படும் தோராய அதிகரிப்பைக் காண்க.

A circular plate expands uniformly under the influence of heat. If its radius increases from 10.5 cm to 10.75 cm, then find an approximate change in the area.

39. கொடுக்கப்பட்ட கணத்தின் மீது பின்வரும் செயலியானது (i) அடைவுப் பண்பு
 (ii) பரிமாற்றுப் பண்பு ஆகியவைகளைக் கொண்டுள்ளதா எனச் சரிபார்க்கவும்.

(a∗b) = a^b; ∀ a, b ∈ N (அடுக்குக்குறி பண்பு)

Verify (i) Closure property (ii) Commutative property of the following operation on the given set

 $(a*b) = a^b$; $\forall a, b \in N$ (exponentiation property).

40. $\int_{a}^{b} x e^{x} dx = 1$ என நிறுவுக.

Prove that
$$\int_{0}^{1} x e^{x} dx = 1$$
.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

[திருப்புக / Turn over

27-

6312

12

பகுதி – IV / PART - IV

குறிப்பு : அனைத்து வினாக்களுக்கும் விடையளிக்கவும்.

Note : Answer all the questions.

(அ) பின்வரும் நேரிய சமன்பாடுகளின் தொகுப்பை கிராமரின் விதிப்படி தீர்க்கவும்.

3x+3y-z=11, 2x-y+2z=9, 4x+3y+2z=25

அல்லது

- (ஆ) தரையிலிருந்து மேல்நோக்கி சுடப்படும் ஒரு துகள் s அடி உயரத்தை t வினாடிகளில் சென்று அடைகிறது. இங்கு s(t) = 128t – 16t²
 - (i) துகள் அடையும் அதிகபட்ச உயரத்தைக் கணக்கிடுகாக குற்றுக்கு கண்
 - (ii) தரையைத் தொடும்போது அதன் திசைவேகம் என்ன ?
- (a) Solve the system of linear equations by Cramer's Rule 3x+3y-z=11, 2x-y+2z=9, 4x+3y+2z=25.

OR

- (b) A particle is fired straight up from the ground to reach a height of s feet in t seconds, where $s(t) = 128t 16t^2$.
 - (i) Compute the maximum height of the particle reached.
 - (ii) What is the velocity when the particle hits the ground ?

42. (அ) $(2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ என்பது முழுவதும் கற்பனை என நிறுவுக.

அல்லது

(ஆ) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ என்ற நீள்வட்டத்தினால் அடைபடும் அரங்கத்தின் பரப்பைத் தொகையிடலைப் பயன்படுத்தி காண்க.

(a) Show that $(2 + i\sqrt{3})^{10} - (2 - i\sqrt{3})^{10}$ is purely imaginary.

1

OR

(b) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using integration.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

7x5=35

43. (அ) $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$ -ன் மதிப்பு $\frac{\pi}{3}$ என நிறுவுக.

அல்லது

(ஆ) ஒரு பரவளையத் தொலைத்தொடர்பு அலைவாங்கியின் குவியம் அதன் முனையிலிருந்து 2மீ தூரத்தில் உள்ளது. மனையிலிருந்து 3மீ தூரத்தில் அலைவாங்கியின் அகலம் 4,√6 மீ என நிறுவுக.

(a) Show that the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$ is $\frac{\pi}{3}$.

OR I - The Spirit of the

(b) The parabolic communication antenna has a focus at 2 mts. distance from the vertex of the antenna. Show that the width of the antenna 3 mts. from the vertex is $4\sqrt{6}$ mts.

44. (அ) $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \sin x$ என்ற நேரியல் வகைக்கெழுச் சமன்பாட்டின் தீர்வு காண்க.

அல்லது

- (ஆ) (p → q) ↔ (¬ p → q) என்ற கூற்று மெய்மமா, அல்லது முரண்பாடா அல்லது நிச்சயமின்மையா என ஆராய்க.
- (a) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$.

OR

(b) Verify whether the following compound proposition is tautology or contradiction or contingency.

 $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow q)$

45. (அ) வெக்டர் முறையில் cos(A – B) = cosA cosB + sinA sinB என நிறுவுக.

அல்லது

- (ஆ) கொடுக்கப்பட்ட சுற்றளவுள்ள செவ்வகங்களுள் சதுரம் மட்டுமே பெரும பரப்பைக் கொண்டிருக்கும் என நிறுவுக.
- (a) Prove by using vector method that $\cos(A-B) = \cos A \cos B + \sin A \sin B$.

OR

(b) Prove that among all the rectangles of the given perimeter, the square has the maximum area.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. [திருப்புக / Turn over PH: 9486379461, 8344933377

46. (அ)
$$rac{x^2}{25} + rac{y^2}{9} = 1$$
 என்ற நீள்வட்டத்தின் மையத் தொலைத்தகவு, குவியங்கள்,
முனைகள் மற்றும் மையம் காண்க. மேலும் தோராய வரைபடம் வரைக.

அல்லது

$$F(x) = \begin{cases} 0, 0, 0, \infty < x < 0 & \text{if } x < x < 1 & \text{if } x < x < x & x & \text{if } x < x < x & \text{if } x < x &$$

என்பது ஒரு தனிநிலை சமவாய்ப்பு மாறியின் குவிவு பரவல் சார்பு எனில்

- (i) நிகழ்தகவு நிறை சார்பு
- (ii) P(x < 3) மற்றும் (iii) P(x ≥ 2) ஆகியவற்றைக் காண்க.
- (a) Find the eccentricity, foci, vertices and centre for the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and draw the rough diagram.

OR

(b) The cumulative distribution function of a discrete random variable is given by:

$$F(x) = \begin{cases} 0 & \text{for } -\infty < x < 0 \\ \frac{1}{2} & \text{for } 0 \le x < 1 \\ \frac{3}{5} & \text{for } 1 \le x < 2 \\ \frac{4}{5} & \text{for } 2 \le x < 3 \\ \frac{9}{10} & \text{for } 3 \le x < 4 \\ 1 & \text{for } 4 \le x < \infty \end{cases}$$

Find (i) The probability mass function

- (ii) P(x < 3) and
- (iii) $P(x \ge 2)$

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

151

47. (அ) y² = 16x என்ற பரவளையத்திற்கும் அதன் செவ்வகலத்திற்கும் இடையே அடைபடும் அரங்கத்தின் பரப்பு <u>128</u> என்பதை தொகையிடலைப் பயன்படுத்தி நிறுவுக.

அல்லது

- (ஆ) (a, 0, 0), (0, b, 0) மற்றும் (0, 0, c) ஆகிய புள்ளிகள் வழிச்செல்லும் தளத்தின் கார்டீசியன் சமன்பாடு <u>x</u> + <u>y</u> + <u>z</u> = 1 என நிறுவுக.
- (a) Show that the area between the parabola $y^2 = 16x$ and its latus rectum (using integration) is $\frac{128}{3}$.

OR

(b) Show that the Cartesian equation of the plane passing through the points (a, 0, 0), (0, b, 0), (0, 0, c) is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

-000-

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

and the state of the s